BESPICK
AI 시대의 IT 운영 전략, 2026년에는 무엇이 달라질까?
IT 운영팀이 관리해야 할 계정은 몇 개일까요? 그중에서 ‘사람’의 계정은 얼마나 될까요? 한 조사에 따르면 기업 내 비인간 신원(Non-Human Identity)의 개수는 사람 계정의 144배에 달하며, 지난 1년 사이 44%나 증가했다고 하는데요. AI 에이전트, API 키, 서비스 계정 등 사람이 아닌 주체가 IT 운영에서 차지하는 비중이 빠르게 커지고 있습니다.
이 밖에도 IT 운영 환경은 급격한 변화를 맞이하고 있는데요. 오늘 베스픽에서는 2026년 IT 운영이 어떻게 달라지고 있는지, 주목해야 할 트렌드는 무엇인지 함께 살펴보겠습니다.

IT 운영, 어떻게 달라지고 있을까?
◉ 증가하는 AI 워크로드, AIaaS 시대가 온다
비즈니스 전반에 AI 도입이 늘어나면서 AI 워크로드가 빠르게 증가하고 있습니다. 과거에는 서버와 네트워크, 애플리케이션 등이 IT 운영의 주요 관리 대상이었는데요. 이제는 LLM부터 AI 학습 및 추론, AI 에이전트, 관련 데이터 파이프라인까지 IT 운영팀이 관리해야 할 영역이 크게 확대되고 있습니다.
특히 AI 에이전트가 업무의 핵심 인터페이스로 떠오르면서 기업의 IT 환경도 달라졌는데요. 기존에는 개별 소프트웨어에서 업무를 처리했다면 지금은 AI 에이전트가 사용자와 소프트웨어, 애플리케이션 등을 오가며 작업을 수행합니다. Cloudflare는 “2026년을 기점으로 기업 IT 환경이 AIaaS(AI as a Service) 중심으로 빠르게 전환될 것”이라고 전망하기도 했죠.
따라서 AI 워크로드는 물론 AIaaS까지 IT 운영 범위에 포함되고 있는데요. 인프라나 워크로드를 별도로 관리하는 것이 아닌 모든 IT 운영 환경을 통합 관리하는 방향으로 확장되고 있습니다.
◉ 경계가 사라진 신원, 데이터, 네트워크
AI가 IT 운영의 중심으로 들어오면서 그동안 당연하게 여겨졌던 경계들이 흐려지고 있습니다. 가장 먼저 변화가 드러나는 영역은 신원(Identity)입니다. AI 에이전트처럼 사람이 아닌 주체가 시스템과 데이터에 직접 접근하는 경우가 늘고 있기 때문이죠. 이제 사람과 기계를 구분하던 기존의 방식만으로는 신원을 관리하기 어려워졌습니다.
데이터의 경계도 모호해지고 있습니다. AI가 확산되면서 데이터가 여러 환경을 넘나들며 실시간으로 생성되고 활용되기 때문입니다. 따라서 데이터가 어디에 있는지, 누가 어떤 목적으로 접근하는지, 출처는 믿을 만한지 등을 파악하는 것이 주요 과제가 되고 있습니다. 네트워크 역시 클라우드와 인터넷, 엣지 환경까지 확장되면서 안과 밖이라는 구분이 사실상 무의미해지고 있습니다.
이러한 변화 속에서 2026년에 주목해야 할 IT 운영 트렌드는 무엇일까요? 크게 네 가지 영역으로 나누어 살펴보겠습니다.
① IT 운영 = AIOps, IT 관리자의 역할은?
AI로 인해 IT 운영 환경이 매우 복잡해진 가운데, 운영 방식 역시 AI 중심으로 변화하고 있습니다. AI를 활용해 IT 운영을 자동화하고 최적화하는 AIOps가 혁신 전략으로 확산되고 있는데요. 실제로 AIOps 시장은 2025년 약 111억 달러 규모에서 2029년 326억 달러까지 성장할 전망이라고 하죠.
AIOps의 기반에는 AI 에이전트가 있습니다. AI 에이전트가 다양한 환경에서 발생하는 데이터를 분석하고 문제 상황을 스스로 판단해 조치를 취하는 것이죠. 여러 AI 에이전트가 서로 소통하며 협업하거나 다른 AI 에이전트에게 지원을 요청하기도 합니다. 이와 같이 AI 에이전트가 IT 운영의 새로운 주체로 자리 잡으면서 많은 운영 업무들이 자동화를 넘어 자율화되고 있습니다.
그렇다면 IT 운영자는 무엇을 해야 할까요? 사람 운영자의 역할은 직접 문제를 해결하는 것에서 AI를 감독하고 자율화의 범위와 방향을 결정하는 역할로 이동하고 있습니다. 자동화가 확대될수록 무엇을 자동화할지 결정하고 관리하는 사람의 중요성은 오히려 커지고 있기 때문이죠. 또한 필요시 자율형 IT를 통제할 수 있는 권한, 즉 안전장치를 갖추는 것도 필수입니다.
② Observability, 모니터링을 넘어 인텔리전스로
IT 운영의 대표 도구인 Observability(관측 가능성)도 함께 진화하고 있습니다. 그동안 Observability 도구들은 복잡한 운영 데이터를 사람이 이해하기 쉬운 형태로 보여주는 것이 가장 중요했는데요. 따라서 직관적인 대시보드, 정교한 알람 설정 기능 등이 경쟁력이었죠.
하지만 AI가 데이터 분석부터 문제 해결까지 자율적으로 수행하면서, Observability 역시 스스로 판단하고 대응하는 인텔리전스로 나아가고 있는데요. Datadog은 “앞으로 Observability는 AI를 활용한 자동화된 인텔리전스(AIOps)로 진화하고, 복잡한 클라우드 환경과 AI 워크로드를 위한 통합 모니터링을 제공하는 방향으로 나아갈 것”이라고 설명했습니다.
관측 대상도 넓어지고 있습니다. 전통적인 IT 인프라와 애플리케이션뿐 아니라 LLM, AI 에이전트 등 AI 워크로드가 새로운 관측 영역으로 떠오르고 있고요. AI 워크로드를 처리하기 위한 네트워크 가시성 역시 Observability의 핵심 지표가 되었습니다.
Observability와 보안을 하나로 통합하는 DevSecOps 흐름도 주목할 만합니다. 성능과 보안 데이터를 함께 살펴보면서 보안 위협을 선제적으로 파악하고 대응하는 방식인데요. 이로써 IT 운영 이슈와 보안 문제를 더 빠르게 해결해 서비스 중단을 최소화하고 비즈니스 연속성을 확보할 수 있습니다.
③ AI를 위한 데이터 운영은 어떻게?
AI 에이전트가 IT 운영의 기본으로 자리 잡은 가운데 데이터 전략이 새롭게 요구되고 있습니다. AI 에이전트가 제대로 동작하려면 데이터를 쉽게 가져오고 처리할 수 있어야 하기 때문이죠. 따로 관리되거나 기존 시스템에 갇혀 있는 데이터는 AI 에이전트의 병목이 될 수 있습니다. AI 에이전트가 바로 처리할 수 있는 형태로 데이터를 구조화하는 AI-Ready 데이터가 트렌드로 떠오르고 있습니다.
이 외에도 다음과 같은 데이터 트렌드들이 주목을 받고 있습니다. 앞서 언급한 것처럼 데이터의 경계가 모호해지고 데이터가 폭발적으로 증가하고 있는 상황에서 등장한 AI 중심의 데이터 전략들입니다.
- 데이터 출처: 넘쳐흐르는 데이터 속에서 데이터의 출처와 사용 방식, 정확도를 파악하는 것이 중요해지고 있습니다. 데이터의 신뢰성을 입증하기 위해 데이터 출처, 사용 이력 등을 확보하는 것이 IT 운영의 중요한 요소가 될 전망입니다.
- 데이터 작업 자동화: 데이터 정리부터 형식 지정, 데이터 ETL 관리 등 대부분의 작업이 AI로 자동화되고 있습니다. 생성형 AI를 활용해 자연어만으로 데이터 파이프라인을 구현함으로써 데이터 관리 효율이 크게 향상될 것입니다.
- 데이터 민주화: 생성형 AI를 통해 자연어만으로 데이터에서 필요한 인사이트를 얻을 수 있습니다. 이로써 데이터 전문가가 아니더라도 누구나 데이터에 자유롭게 접근하고 활용할 수 있으며, 궁극적으로는 데이터 역량을 확보하게 됩니다.
- 합성 데이터: 현실과 매우 흡사하지만 실제가 아닌 데이터로 AI를 통해 생성되는데요. 의료, 금융 등 실제 데이터를 수집하기 어려운 영역에서도 문제없이 활용할 수 있습니다. 앞으로 기업의 75%가 합성 데이터를 활용할 것으로 전망됩니다.
- 데이터 주권: 데이터를 저장하고 사용하는 방식은 국가나 지역마다 상이합니다. 최근에는 이러한 규제가 국경을 넘어 적용되기도 하는데요. 따라서 이러한 규제에 맞춰 데이터를 관리하는 데이터 주권이 데이터 관리의 핵심으로 떠오르고 있습니다.
④ NHI부터 PQC까지, 보안의 새로운 과제
IT 운영에서 빠질 수 없는 보안의 패러다임도 바뀌고 있습니다. 특히 신원의 경계가 허물어지고 AI 워크플로우 내 다양한 주체가 등장하면서 비인간 신원(NHI) 관리가 필수 과제가 되었는데요. Okta는 올해 전략에서 모든 신원 관리 대상에 AI 에이전트를 포함시키며 신원 관리 플랫폼의 적용 범위를 비인간 신원까지 확대하기도 했습니다.
AI 워크로드를 보호하기 위한 새로운 보안 영역도 등장하고 있습니다. Cloudflare는 2026년에는 AI 방화벽, AI 게이트웨이 등 AI 보안에 집중할 계획이라고 밝혔는데요. 서로 긴밀하게 연결되어 있는 AI 시스템의 모든 계층을 보호하는 것이 중요하다고 강조했습니다.
인증 방식도 빠르게 전환되고 있습니다. 비밀번호 기반의 인증은 줄어들고 지문, Face ID 등 생체 인식을 통한 로그인 방식이 대중화되고 있죠. 양자 컴퓨터 시대를 대비한 PQC(Post-Quantum Cryptography, 포스트 양자 암호화) 준비도 시작되었는데요. 지금의 컴퓨터와는 비교할 수 없을 정도로 빠른 양자 컴퓨터가 실용화되면 기존 암호화 체계는 쉽게 뚫릴 수 있기 때문에 대응책을 마련하는 것입니다.
지금까지 올해 IT 운영 트렌드를 전망해 보았는데요. 정리하자면 IT 운영의 핵심은 AI와 공존하는 환경을 얼마나 안정적으로 운영할 수 있는가에 달려 있습니다. 또한 AI 워크로드, 데이터, 보안, Observability 등 IT 운영 영역들은 서로 연결된 하나의 영역이라고 볼 수 있는데요. 따라서 전체를 아우르는 통합적인 접근이 중요해지고 있습니다.
이러한 흐름 속에서 IT 운영 파트너의 역할도 단순히 제품이나 기술을 도입하는 것을 넘어, 복잡해진 운영 환경을 함께 설계하고 정비하는 방향으로 진화하고 있는데요. 다양한 경험과 역량을 바탕으로 IT 운영 전반의 구조를 이해하고 함께 설계할 수 있는 파트너가 필요한 시점입니다.
베스핀글로벌은 Datadog, Okta, Cloudflare 등 각 영역을 선도하는 글로벌 파트너들과 함께 2026년 IT 운영 전략을 함께 설계하고 있습니다. AI 시대의 IT 운영 전략이 궁금하시다면, 베스핀글로벌에 문의해 주시기 바랍니다.
※본 콘텐츠는 베스핀글로벌의 뉴스레터 ‘베스픽’을 통해 매주 화요일 발행되는 콘텐츠입니다. 베스픽을 구독하시면 가장 먼저 IT 업계 최신 이슈 및 인사이트를 전달받으실 수 있습니다.
FAQ
Q1. 비인간 신원(NHI, Non-Human Identity)이 무엇이며 왜 중요한가요?
AI 에이전트, API 키, 서비스 계정 등 사람이 아닌 주체가 시스템에 접근하기 위해 사용하는 식별 정보를 말합니다. 2026년 기준 기업 내 NHI는 사람 계정보다 144배나 많아졌으며, 관리가 소홀할 경우 보안의 가장 취약한 고리가 되기 때문에 반드시 별도의 관리 전략이 필요합니다.
Q2. 2026년 IT 운영에서 AIOps는 어떤 역할을 하나요?
AIOps는 단순한 자동화를 넘어 ‘자율 운영’의 핵심이 됩니다. AI 에이전트가 복잡한 인프라 데이터를 실시간 분석하고 문제 상황을 스스로 판단하여 조치합니다. 이를 통해 IT 운영자는 반복적인 장애 대응에서 벗어나 자율형 IT 시스템의 방향성을 결정하고 안전장치를 관리하는 고도화된 역할에 집중하게 됩니다.
Q3. AI 에이전트 도입이 IT 관측 가능성(Observability) 방식에 어떤 영향을 주나요?
사람이 대시보드를 보고 판단하던 기존 방식과 달리, 관측 가능성 도구가 직접 AI 워크로드와 네트워크 가시성을 분석해 이슈를 선제적으로 해결합니다. 또한 성능과 보안 데이터를 통합 분석하는 DevSecOps 흐름이 강화되어 비즈니스 연속성을 더욱 효과적으로 확보할 수 있습니다.
Q4. AI 시대에 맞는 데이터 운영(DataOps)의 핵심 트렌드는 무엇인가요?
핵심은 ‘AI-Ready 데이터’입니다. AI 에이전트가 즉각 활용할 수 있도록 데이터를 구조화하고, 데이터의 출처와 신뢰성을 보장하는 데이터 주권 관리가 필수적입니다. 또한 자연어를 활용한 데이터 파이프라인 자동화와 합성 데이터 활용이 기업의 핵심 경쟁력이 될 전망입니다.
Q5. 양자 컴퓨터 시대를 대비한 보안 전략(PQC)은 지금 준비해야 하나요?
네, 그렇습니다. 양자 컴퓨터가 실용화되면 기존 암호화 체계가 무력화될 수 있기 때문에, 2026년부터는 포스트 양자 암호화(PQC, Post-Quantum Cryptography) 체계로의 전환 준비가 시작되어야 합니다. 이는 비인간 신원(NHI) 보호 및 생체 인식 기반의 인증 체계 전환과 함께 차세대 보안의 필수 요소로 꼽힙니다.
